If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+100x-75000=0
a = 1; b = 100; c = -75000;
Δ = b2-4ac
Δ = 1002-4·1·(-75000)
Δ = 310000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{310000}=\sqrt{10000*31}=\sqrt{10000}*\sqrt{31}=100\sqrt{31}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(100)-100\sqrt{31}}{2*1}=\frac{-100-100\sqrt{31}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(100)+100\sqrt{31}}{2*1}=\frac{-100+100\sqrt{31}}{2} $
| 3m+2=1m+4 | | 4(x-3=2x-22 | | -(8x-5)+(6-7x)-1=7-(x-1)+4x+4) | | 4y-2=-6-3y | | 5x^2+128x-240=0 | | 4a-6=20 | | 7u=-14/3 | | (2x-91)=(8x+7) | | 8(1-6b)=424 | | 8-58/z=7 | | 6.5/f+2.6=3.24 | | 5.97=7.06-c/4 | | 17.2=6.14-2.7/h | | 8=7+h/105 | | 1=5+a/46 | | 2=84/y-3 | | 40−3g=13 | | x=16+30÷5-4÷2 | | 9q-1=35 | | 12÷g+20=22 | | 12b-10=275 | | X2-117x=0 | | 0=9-48/k | | 5=6q-1 | | 25=(w-4)2 | | 9=120/h-8 | | (4y/7)-(7/8)=9/56 | | 0.33m+2.19=4.5 | | 4-21/s=1 | | 128/u-4=12 | | 88=11k-11 | | 20=10-117/g |