If it's not what You are looking for type in the equation solver your own equation and let us solve it.
w2=56
We move all terms to the left:
w2-(56)=0
We add all the numbers together, and all the variables
w^2-56=0
a = 1; b = 0; c = -56;
Δ = b2-4ac
Δ = 02-4·1·(-56)
Δ = 224
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{224}=\sqrt{16*14}=\sqrt{16}*\sqrt{14}=4\sqrt{14}$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{14}}{2*1}=\frac{0-4\sqrt{14}}{2} =-\frac{4\sqrt{14}}{2} =-2\sqrt{14} $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{14}}{2*1}=\frac{0+4\sqrt{14}}{2} =\frac{4\sqrt{14}}{2} =2\sqrt{14} $
| 7x^2-4x-63=0 | | x3=7529526 | | 10-2(2x-8)=40 | | 10(s-5)=20 | | 2/3(x+60)=48 | | 23(x+60)=48 | | -3t-19=17 | | -12x-13=121 | | 329+5.75m=363.50. | | 4.3x-14=50.5 | | -8x+3=23 | | 2t+24=7t+4 | | 2x(x+1)=4(x-3) | | 2x+3=7x+18 | | 50=x+2x-10+2x+30 | | y/3-9=-18 | | 9(u-92)=18 | | 6(4w+4)/4=7 | | 4x-32=88 | | 18=9(u−92) | | 8=-2(x+1) | | 2/5xX=28 | | 120=-7d+8 | | -7+4j=-31 | | 6(v+3)=66 | | 6x(5+4)/3=4 | | 9.7x=60 | | 3+7n=59 | | t/6+18=22 | | 3+6x(5+4)=4 | | 4(2x−5)=8x−20 | | 3b-12=-b+12 |