If it's not what You are looking for type in the equation solver your own equation and let us solve it.
w2-2w-63=0
We add all the numbers together, and all the variables
w^2-2w-63=0
a = 1; b = -2; c = -63;
Δ = b2-4ac
Δ = -22-4·1·(-63)
Δ = 256
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{256}=16$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-16}{2*1}=\frac{-14}{2} =-7 $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+16}{2*1}=\frac{18}{2} =9 $
| W=-250t-1250 | | 4k+6=(5-2) | | X+9/7=x+3/6 | | 4(b-1.4)=11.7 | | 2k^2-4k-16=0 | | 2.x+22=42 | | q/32=6 | | 9x42=4x-13 | | 4n^2+48=28n | | 3s+12=20 | | 943-d=425 | | 105=0.8d^2-2.4d | | 70/50=11x-4/60 | | 19+5n=7(-6+8n) | | Z2-2z+1=1 | | 3s+20=12 | | 9x+6=360 | | 10x+7=360 | | Xz8= | | 10x-1=360 | | 8x^2-21x=-59x | | Y=3+(x+4) | | 5(x+10)=2(x-5) | | 5/8n+3/8=1/4+5/8n | | 6m+4(2m-6)=4 | | 5/9x+1/6=-3/4 | | 8x^3−30x^2−23x+60=0x=4 | | -27=3+5w | | 43+2x-1=180 | | 7x+3+7=17 | | (2x+3)(-2x+8)=0 | | 2+3+3=x10 |