If it's not what You are looking for type in the equation solver your own equation and let us solve it.
w2+234w=150
We move all terms to the left:
w2+234w-(150)=0
We add all the numbers together, and all the variables
w^2+234w-150=0
a = 1; b = 234; c = -150;
Δ = b2-4ac
Δ = 2342-4·1·(-150)
Δ = 55356
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{55356}=\sqrt{4*13839}=\sqrt{4}*\sqrt{13839}=2\sqrt{13839}$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(234)-2\sqrt{13839}}{2*1}=\frac{-234-2\sqrt{13839}}{2} $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(234)+2\sqrt{13839}}{2*1}=\frac{-234+2\sqrt{13839}}{2} $
| 1=v+29/8 | | 5x+5-4x+15-X=0 | | -139+11x=41-x | | 3x=-46 | | ⅕(x-8)=x-16 | | -v/4=-55 | | 10+3x=-50 | | 16z=752 | | 3/2x-12+12=15 | | 4x-10=6x(-12) | | (9x+11)+(55)+(3+18x)=360 | | -36=3(x-7)-8x | | -10x2−50x+60=0 | | 5(w-94)=-10 | | 2b−4=10 | | 3(2x-5)=2x=1 | | 10x2−50x+60=0 | | 221=75-x | | 7w-3w+16=-4 | | 5=b*2 | | 5^x+7=0 | | 2(2+x)-(6-7x)=20x-(1+4x) | | r/5-2=6 | | 3+8x=5-12x | | 3x-2x=1+16 | | 13q=144 | | 10(z+3)-2(z-1)=4(z-3)+3(z-3) | | (2.4*10^3)*(3*10^n)=7.2*10^9 | | 12(3v+1)-5=-(-6-6v) | | -35x-6+2=1/3-45x+9+17 | | -11-(1+11x)=2x+51 | | 17040÷80=t |