If it's not what You are looking for type in the equation solver your own equation and let us solve it.
w2+19w+18=0
We add all the numbers together, and all the variables
w^2+19w+18=0
a = 1; b = 19; c = +18;
Δ = b2-4ac
Δ = 192-4·1·18
Δ = 289
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{289}=17$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(19)-17}{2*1}=\frac{-36}{2} =-18 $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(19)+17}{2*1}=\frac{-2}{2} =-1 $
| 2x+7−5x+8=3(5+6 | | 0.5xX-6=-4 | | 3x2+5x-12=3x2+38 | | 2x+6(3x+1)=4x-5 | | x-87=14 | | 17x+-13x=-4 | | 4=j-88 | | 8m-5=6m-1 | | y=2(3y+4+2)=196−16 | | 4(2x+5)=10x-(2x-5) | | 16=4(s+3) | | (k+1)/8=7 | | 14.03-0.17x=65.03 | | 1x=3I | | 2x+26)=(3x-33 | | 12=4x-3x+2 | | 12m+150=1130.60 | | 2(x+1)+x=8(x-1) | | 3g(g-9)=18 | | -2b+-11=7 | | 5x+4x-4=2(6-1x)+11x | | F(x)=50x-350 | | 90+90+120+x+x=540 | | 4(4q-2)=12q | | 3(2x+4)=6x-1 | | 18u-17u+4=8 | | 7+3x-9=13 | | (2n-7)=(5) | | 7.25x=9 | | 4q(4q-2)=12q | | 9=11+y/4 | | 6x+7=3×-6 |