If it's not what You are looking for type in the equation solver your own equation and let us solve it.
w2+122=132
We move all terms to the left:
w2+122-(132)=0
We add all the numbers together, and all the variables
w^2-10=0
a = 1; b = 0; c = -10;
Δ = b2-4ac
Δ = 02-4·1·(-10)
Δ = 40
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{40}=\sqrt{4*10}=\sqrt{4}*\sqrt{10}=2\sqrt{10}$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{10}}{2*1}=\frac{0-2\sqrt{10}}{2} =-\frac{2\sqrt{10}}{2} =-\sqrt{10} $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{10}}{2*1}=\frac{0+2\sqrt{10}}{2} =\frac{2\sqrt{10}}{2} =\sqrt{10} $
| 23y+9=5 | | X^2+60x-75=0 | | 5/9x-5/3x=3/4x-1/2 | | 0.05x150=7.5 | | 6x-27=3x+81 | | (5x+34)/5=11 | | 1000(1.05)^2t=50.000 | | -31=-8v+5(v-5) | | 2(32)=x | | 15x-2=8x | | 2(15x+2)=8 | | 2(5x+3)=9x+15 | | 2(x)=3x-15 | | 2(6x+24)=4x-1 | | -5y-6(-15y-5)=1050 | | 12v=49+5v | | 2x+18=9(2x-2) | | -8=9v+1 | | -34=8-6w | | 7y+63=16y | | 2x+3+6x+3=90 | | x62=-36 | | 54+9v=18v | | 2x/3=2x-30 | | 5b+10=90-3b | | 248/z=62 | | 9r+8r=85 | | 8/38=x/19 | | 10/30=9/x | | 3/5x+4=11 | | 6x+15=17x+4 | | 2x+11=8x+7 |