If it's not what You are looking for type in the equation solver your own equation and let us solve it.
w(w+80)=240
We move all terms to the left:
w(w+80)-(240)=0
We multiply parentheses
w^2+80w-240=0
a = 1; b = 80; c = -240;
Δ = b2-4ac
Δ = 802-4·1·(-240)
Δ = 7360
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{7360}=\sqrt{64*115}=\sqrt{64}*\sqrt{115}=8\sqrt{115}$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(80)-8\sqrt{115}}{2*1}=\frac{-80-8\sqrt{115}}{2} $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(80)+8\sqrt{115}}{2*1}=\frac{-80+8\sqrt{115}}{2} $
| w^2+8w+240=0 | | –8−2f=4−6f | | 4.5p=40=112 | | 30-5x=80 | | 10−2v−7v=–10−5v | | 40=4.5p | | 95=12x-48 | | 10k+2=8+4k | | 9/x=×/4 | | (3x+5)/(4-2x)=5 | | )(3x+5)/(4-2x)=5/ | | 4d−10=2d | | 3(4+2x)-(1-4x)=19 | | 12x-4=8x16 | | 4^(x-2)=0.125 | | 20/x=0.8/0.4 | | (5/3)-(y/4)=16 | | 230=6x+2 | | 3x^2=2.5 | | 34=2(a+9) | | 6(y-8)=-42 | | 12=4(e-7) | | 8(q-6)=-24 | | -21=7(t-9) | | 38=2(f+10) | | 3j+10=j−2 | | 25=10h+ | | -3(5-x)=21 | | -6(-5x+4)-8x=4(x-1)-5 | | 6k^2-42k+71=0 | | 8x+8=4x+34 | | –2x+2+4x=–8x+7x–1 |