w(w+5/2)=857

Simple and best practice solution for w(w+5/2)=857 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for w(w+5/2)=857 equation:



w(w+5/2)=857
We move all terms to the left:
w(w+5/2)-(857)=0
We add all the numbers together, and all the variables
w(+w+5/2)-857=0
We multiply parentheses
w^2+5w^2-857=0
We add all the numbers together, and all the variables
6w^2-857=0
a = 6; b = 0; c = -857;
Δ = b2-4ac
Δ = 02-4·6·(-857)
Δ = 20568
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{20568}=\sqrt{4*5142}=\sqrt{4}*\sqrt{5142}=2\sqrt{5142}$
$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{5142}}{2*6}=\frac{0-2\sqrt{5142}}{12} =-\frac{2\sqrt{5142}}{12} =-\frac{\sqrt{5142}}{6} $
$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{5142}}{2*6}=\frac{0+2\sqrt{5142}}{12} =\frac{2\sqrt{5142}}{12} =\frac{\sqrt{5142}}{6} $

See similar equations:

| 40=(4x+90)-8 | | √(48-2x)=x | | 3x+2x+5=500 | | 3x+15=3(x+5)​ | | 102=y3 | | y=6(4)+3​ | | 22.00x+24.50=47.00+18.25x | | 37=y3 | | 20x²+10x10=0 | | 8n/8=72 | | w=18-8w | | 42+3x=9x | | (x+16)=4x | | 17(n+17)=748 | | 4m+2=2M-8 | | -5(3x+2)=8 | | -16+3n= | | 6f+5=3f+20 | | -8-6x=4x-18 | | 2(-2x+8)=1 | | -6x+11=2x-5 | | -2x-4=-2x+9 | | 7/10=1/5(x+3/2) | | 37x-36x=1150 | | m+7=19(m=10) | | 3.6x=(8.24) | | 25+20=5(x+4) | | Y-8=-4(x-(-19) | | 8x-6x=244 | | 3=-7x+35-9x | | -5-2x=5x-2 | | x-7/2x-9=4/3 |

Equations solver categories