w(w+40)=4000

Simple and best practice solution for w(w+40)=4000 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for w(w+40)=4000 equation:



w(w+40)=4000
We move all terms to the left:
w(w+40)-(4000)=0
We multiply parentheses
w^2+40w-4000=0
a = 1; b = 40; c = -4000;
Δ = b2-4ac
Δ = 402-4·1·(-4000)
Δ = 17600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{17600}=\sqrt{1600*11}=\sqrt{1600}*\sqrt{11}=40\sqrt{11}$
$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(40)-40\sqrt{11}}{2*1}=\frac{-40-40\sqrt{11}}{2} $
$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(40)+40\sqrt{11}}{2*1}=\frac{-40+40\sqrt{11}}{2} $

See similar equations:

| (6x+2)=122 | | -36x+7x=76-x | | (3x+16)=70 | | (6x+5)=95 | | 7x-1+6x=5x+2-7x | | 5x+4x=-2 | | 1x+2x+3x+4x=10 | | (x+29)=101 | | (6x+3)=93 | | -4y+12=4-(y+7) | | 3x/2-4x=-5 | | 2(r+9)+4r=-2(r-5) | | (x+22)=45 | | (148x)=(140x)=(136x)=(150x)=(142x) | | q—3=16 | | -5/3=3/5y-7/4 | | q+-3=10 | | p-0.3p=385 | | (5x+3)=(127x)=(10x+7)=(88x) | | 3(x+6)-4=6x+2  | | 16^(x+1)=8^(3x-2) | | (X=84)(x=128)(x=87)(x=150)(x=103) | | n=12-2 | | 6+4=q | | 3x+4=x-22 | | m+-1=2 | | 3-(9a)=27 | | 4+4=f | | h=3-1 | | 1.5x−9=0 | | (15x+6)=(48)=(51) | | b=1-4 |

Equations solver categories