If it's not what You are looking for type in the equation solver your own equation and let us solve it.
w(w+3)=42
We move all terms to the left:
w(w+3)-(42)=0
We multiply parentheses
w^2+3w-42=0
a = 1; b = 3; c = -42;
Δ = b2-4ac
Δ = 32-4·1·(-42)
Δ = 177
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-\sqrt{177}}{2*1}=\frac{-3-\sqrt{177}}{2} $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+\sqrt{177}}{2*1}=\frac{-3+\sqrt{177}}{2} $
| 4w^2-6w-143=0 | | 128=8*a | | |3+b|=4 | | x2+16=0 | | 0.50(x+30)+0.30x=31 | | (4x-3)(6x^2-24x+9)=0 | | (8-1)^2=x^2=(x+1)^2 | | 5(2x+5)=10x-4 | | 8x^2+22x-90=0 | | 12t=6 | | 11k-37=40 | | 4(k+2)-3K=6+9 | | 2/5(h)-7=12/5(h)-2h+3 | | 7-(3n-4)=4-4n | | 2(p+4)=32 | | 3(4x-5)^2+17=19x-8 | | 1/2x-3(x+4)=2/3 | | 59+9e=140 | | 2x-5(x-5)=-3+2x | | y=7-3× | | 11(v+1)-3v=2(4v+4)-13 | | 18f-20=16 | | 1/3x-7=24 | | 6.5v-3=10 | | 3/4+3/6-x=1/4 | | 1/29(x+7)=3x/5+9 | | 0.70(x+100)+0.90x=134 | | 5x3(7x6)=1 | | 13x^2-160x+20=0 | | 3/5a+1/5=2 | | 2x^2-4=-76 | | 3(7s+4)-9s=3(4s+5)-20 |