If it's not what You are looking for type in the equation solver your own equation and let us solve it.
w(w+16)=35
We move all terms to the left:
w(w+16)-(35)=0
We multiply parentheses
w^2+16w-35=0
a = 1; b = 16; c = -35;
Δ = b2-4ac
Δ = 162-4·1·(-35)
Δ = 396
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{396}=\sqrt{36*11}=\sqrt{36}*\sqrt{11}=6\sqrt{11}$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-6\sqrt{11}}{2*1}=\frac{-16-6\sqrt{11}}{2} $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+6\sqrt{11}}{2*1}=\frac{-16+6\sqrt{11}}{2} $
| 65x=45x+90 | | y+60=20 | | 11–2x=–11 | | 3c+6+3c+6+72+72=360 | | -v+257=175 | | -2x+9=-5x-7 | | 5x-2(x-5)=9+5x+3 | | 7(2x-1)11=6+6x | | 150=1/4p | | 0.3(4—x)=x—1.4 | | 3(4m-5)=22m | | -9+9y=-2+10y | | 2+7z=4z+20 | | 2(x+1)=2x–3 | | 212.482=–13.1(2p–9) | | x-3-12=-6 | | -4+y=3/4y-18/4 | | 3c+6=180 | | 6q+16=3q+22 | | -3k+6-3k+2=50 | | 18+4x=-16+26x | | $0.90x0.1= | | -7a+29=11 | | 8x-40=4x+20 | | 7x^2+76x-1120=0 | | 90=2.50(x+5) | | 20–(3x–9)–2=–(-11x+1) | | -n/2+5=3 | | 6x–22=54 | | n³=256 | | 1/4(60+16x=15+4x | | 10) 6x–22=54 |