If it's not what You are looking for type in the equation solver your own equation and let us solve it.
w(w+11)=350
We move all terms to the left:
w(w+11)-(350)=0
We multiply parentheses
w^2+11w-350=0
a = 1; b = 11; c = -350;
Δ = b2-4ac
Δ = 112-4·1·(-350)
Δ = 1521
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1521}=39$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(11)-39}{2*1}=\frac{-50}{2} =-25 $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(11)+39}{2*1}=\frac{28}{2} =14 $
| 4-6+5x=-4 | | 46=9(-2x-8)-8 | | 3x=44-(8x) | | X^2−4x=-1 | | 5h-70=60 | | (1/6)+(15x/6)=0 | | -5+10k=25 | | 8=7x=4x | | 3.3.2+(y-1.2)=12.8 | | 7x+1=9x-15 | | (7.4•k)-2=5.4 | | 9-3(x+6)=14-7x | | 10+(x-7)=x | | 3(2x+7)=x-4 | | V+8=3v+12 | | 3(x–2)=–9 | | 10x+48=18x-34 | | 6.7+(q-4.7)=9.6 | | (X+4)+(2x+1)+(3x-2)=45 | | 2x-8x-13=-6x+8-13 | | a+5=-5+47 | | I2x-5=-1 | | -28=-8w+4(w-8) | | h+240/27=22 | | -2=-8w+4(w-8) | | F(-7)=-2x+5 | | 7a-6=13 | | v-439/19=20 | | 16+3.5m=51 | | (x/6)+(x/1)=56 | | -2=-8w+4w-8 | | 2x=2x-9 |