If it's not what You are looking for type in the equation solver your own equation and let us solve it.
w(w+1)=30
We move all terms to the left:
w(w+1)-(30)=0
We multiply parentheses
w^2+w-30=0
a = 1; b = 1; c = -30;
Δ = b2-4ac
Δ = 12-4·1·(-30)
Δ = 121
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{121}=11$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-11}{2*1}=\frac{-12}{2} =-6 $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+11}{2*1}=\frac{10}{2} =5 $
| h2+47=47 | | t2=-54 | | -3(x+8)=-2(x-1) | | 4.9x^+10x-10=0 | | -8(1+6a)-3(6a+3)=-17 | | 60/5*(7-5)=x | | 5/6y=-25/48 | | n2–55=0 | | 2/x+5=0 | | X+14+3x=90 | | 60/5(7-5)=x | | k2–15=50 | | 4k^2-80=0 | | 56/81=8/9i | | X²+13=4x | | 2x^2-31x+42=0 | | 0=-4.9t2+10t-10 | | 2/3w-4=5/3w | | 34.55=7g+3.89 | | (6x)+(x+6)=90 | | 2t+1=135 | | 21=-5(6+8b)+7(b-6) | | w^3=512 | | 30/77=6/7k | | 5/10x-3/10=25/10x+7/10 | | t2–16=0 | | g/4=302 | | 14/9k=1/3 | | -1t=9(t-10) | | 2r2=18 | | 17=7x+3=-5x | | -3(4p+4)-2(2-14p)-3(7+5p)=0 |