If it's not what You are looking for type in the equation solver your own equation and let us solve it.
w(3w+5)=42
We move all terms to the left:
w(3w+5)-(42)=0
We multiply parentheses
3w^2+5w-42=0
a = 3; b = 5; c = -42;
Δ = b2-4ac
Δ = 52-4·3·(-42)
Δ = 529
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{529}=23$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-23}{2*3}=\frac{-28}{6} =-4+2/3 $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+23}{2*3}=\frac{18}{6} =3 $
| 12/21=x/14 | | 6.00+0.44x=12.00+0.30x | | 2x^+2x-144=0 | | 2x+29=63 | | 3x+1+x-4+3x+1+x-4=175 | | 7^v=23 | | 25=-5u+3(u+5) | | 9x+5=-96 | | 2d^2+7d−4=0 | | 3u^2-16u-12=0 | | 45+23=x+37 | | -4*x+9=-16 | | 3x+33=66 | | g(-2)=11 | | 5+4n=-7 | | (2)+4/y=7/12y | | 3h-5=17 | | 2+(4/y)=7/12y | | 3x+25=2x-10 | | 7x+18=64 | | 3(x+10=5+x) | | 3/4u=48 | | 3(x+10=5+x | | 3v-2v=-4 | | -3(4-2w=18 | | Y=x² | | 10x+4-6x^2=0 | | x*5-3=-3+-3+15 | | m+3/4-m+4/8=2 | | 60x+70=50x+110 | | x-0.005x=300 | | 8j+3j-3j-8j+j=13 |