w(1/2)=31/2-1

Simple and best practice solution for w(1/2)=31/2-1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for w(1/2)=31/2-1 equation:



w(1/2)=31/2-1
We move all terms to the left:
w(1/2)-(31/2-1)=0
We add all the numbers together, and all the variables
w(+1/2)-(31/2-1)=0
We multiply parentheses
w^2-(31/2-1)=0
We get rid of parentheses
w^2+1-31/2=0
We multiply all the terms by the denominator
w^2*2-31+1*2=0
We add all the numbers together, and all the variables
w^2*2-29=0
Wy multiply elements
2w^2-29=0
a = 2; b = 0; c = -29;
Δ = b2-4ac
Δ = 02-4·2·(-29)
Δ = 232
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{232}=\sqrt{4*58}=\sqrt{4}*\sqrt{58}=2\sqrt{58}$
$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{58}}{2*2}=\frac{0-2\sqrt{58}}{4} =-\frac{2\sqrt{58}}{4} =-\frac{\sqrt{58}}{2} $
$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{58}}{2*2}=\frac{0+2\sqrt{58}}{4} =\frac{2\sqrt{58}}{4} =\frac{\sqrt{58}}{2} $

See similar equations:

| F(x)=7(0.9)^x | | X+3/2y-4=6 | | 42=10+x | | 8x+2(x+4)=8x+12 | | 5²+12²=x² | | 23+2x=41 | | (6x1)°+(5x-17)°+(9x-24)=180 | | (3x-1)/4=8 | | 42=10-2x | | n=3=-1 | | 42=10x | | 9x2+120x-2025=0 | | 0.55x=10+0.25x | | -6-5(6r+6)=84 | | 5x+2(3x−1)=−46 | | 8.375-0.625y=25-3y | | 8x+2=7x+12 | | .10x+.25(60-x)=8.25 | | 1/2=m‐1/8 | | 3(x-2)=30+×-2-×+2 | | 0.020x-0.08(x-10)=24.80 | | 3.6x=27 | | 12x^2-34x+22=0 | | 3.7x-0.20x=17.5 | | 11x+2=-46 | | 5(x+9)=-6(2x-5)+5x | | b/5-5=7 | | 2-5(x+5)=4x+8 | | 26.8-39.4=x | | 154=34+2x | | s/8-6=5 | | x(.80)+(20-x)(1.25)=20(1.09) |

Equations solver categories