If it's not what You are looking for type in the equation solver your own equation and let us solve it.
v2+5v+6=0
We add all the numbers together, and all the variables
v^2+5v+6=0
a = 1; b = 5; c = +6;
Δ = b2-4ac
Δ = 52-4·1·6
Δ = 1
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1}=1$$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-1}{2*1}=\frac{-6}{2} =-3 $$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+1}{2*1}=\frac{-4}{2} =-2 $
| 6/5+4/x-6=x+34/5x-30 | | −9/2x−8=−1−6/4x | | -9/2x-8=-x-6/4x | | -2/3y-0.75=5 | | 3w+3/4=9/4 | | 6x+5/2x+15=1/3 | | 3000=10000-x | | H(x)=5÷(3x+11) | | 12x+13=5(45x+2)12x+13=5(45x+2) | | 0.75+0.35=x | | 7(x-3)=7(x+2) | | 18=-6(2x+) | | x/2x+10=24 | | f(4)=12 | | 0=8/7x+4 | | f(1)=12 | | X-(x/10)=578 | | f(0)=12 | | 24-2p=21 | | 12.5=y/8 | | F(4)=x^2-x+3 | | F(3)=x^2-x+3 | | F(2)=x^2-x+3 | | F(1)=x^2-x+3 | | 64×y=1728 | | F(0)=x^2-x+3 | | 4^(2x-7)=-0.5 | | x^2-x-1849=0 | | x^2-x-1849=9 | | 4x^2+33x-54=0 | | -9x-4=2x-10 | | -.25(×+2)+5=-1x |