u(u-5)+8u=u(u+2)4

Simple and best practice solution for u(u-5)+8u=u(u+2)4 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for u(u-5)+8u=u(u+2)4 equation:



u(u-5)+8u=u(u+2)4
We move all terms to the left:
u(u-5)+8u-(u(u+2)4)=0
We add all the numbers together, and all the variables
8u+u(u-5)-(u(u+2)4)=0
We multiply parentheses
u^2+8u-5u-(u(u+2)4)=0
We calculate terms in parentheses: -(u(u+2)4), so:
u(u+2)4
We multiply parentheses
4u^2+8u
Back to the equation:
-(4u^2+8u)
We add all the numbers together, and all the variables
u^2+3u-(4u^2+8u)=0
We get rid of parentheses
u^2-4u^2+3u-8u=0
We add all the numbers together, and all the variables
-3u^2-5u=0
a = -3; b = -5; c = 0;
Δ = b2-4ac
Δ = -52-4·(-3)·0
Δ = 25
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{25}=5$
$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-5)-5}{2*-3}=\frac{0}{-6} =0 $
$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-5)+5}{2*-3}=\frac{10}{-6} =-1+2/3 $

See similar equations:

| 6x-10+112=180 | | 3(2n-4=36 | | 124=-8+6(1-7n) | | 124=-8+6(1-7n | | 41-2n=5(2n-8) | | −6p+46=10 | | 10−4y=-2 | | 6m2+7m-98=0 | | 3x^2-20x+18=0 | | 25=19+9x | | 25=19+x | | 6m2+7m-98=0) | | -5+v/3=-17 | | 6x-10=112 | | 25=y/5+9 | | 3h+1/2=(2h+6) | | 3.62x+4=13.1044+2x | | 4x+9=10x-10 | | X^x-3=5x-7 | | (6x-9)=(4x^2-7) | | -1.4x=9(x+2.19) | | 5h-8=16-h | | 0.7(10x+25)=3.4(0.2x+5) | | 7(5n+1)=-273 | | v/3+2=4 | | 16n=80 | | -7=-3-y | | x+23/5=4 | | 8(x+6)=8(x+9) | | 10r2-20=0) | | d+(-5)=12 | | 5x-2-70=-80 |

Equations solver categories