If it's not what You are looking for type in the equation solver your own equation and let us solve it.
t=20-16t^2+32t
We move all terms to the left:
t-(20-16t^2+32t)=0
We get rid of parentheses
16t^2-32t+t-20=0
We add all the numbers together, and all the variables
16t^2-31t-20=0
a = 16; b = -31; c = -20;
Δ = b2-4ac
Δ = -312-4·16·(-20)
Δ = 2241
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2241}=\sqrt{9*249}=\sqrt{9}*\sqrt{249}=3\sqrt{249}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-31)-3\sqrt{249}}{2*16}=\frac{31-3\sqrt{249}}{32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-31)+3\sqrt{249}}{2*16}=\frac{31+3\sqrt{249}}{32} $
| 8-y/3=19 | | 16+2v=42 | | 3x-16=136 | | t/4+ 3=7 | | 2x=(4x)/3 | | t4+ 3=7 | | X=1.8x28.8+32 | | 19=10+3j | | (x+7)^3=10 | | 60=0.0018x | | 5=0.002x | | 6(x+8)-9=39 | | 6z-107=109 | | 6z-107=71 | | 2x2=10x−9 | | Y=2/3xx=4000 | | 1/3y+11=15 | | 12+28=-5(4x-8) | | s{^3}-64=0 | | -8(x+6)+8=-40 | | −3+5a=4a−10 | | 5x-48=72 | | 4(5x+9)=-13+29 | | 5x-48=108 | | 5z-70=110 | | -3+2v=17 | | (0.18)^x=5 | | 0=54t-12t^2 | | 5z-70=180 | | 10x-6=3x-1 | | 8q=10+6q | | 25-f=15 |