If it's not what You are looking for type in the equation solver your own equation and let us solve it.
t2=50
We move all terms to the left:
t2-(50)=0
We add all the numbers together, and all the variables
t^2-50=0
a = 1; b = 0; c = -50;
Δ = b2-4ac
Δ = 02-4·1·(-50)
Δ = 200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{200}=\sqrt{100*2}=\sqrt{100}*\sqrt{2}=10\sqrt{2}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-10\sqrt{2}}{2*1}=\frac{0-10\sqrt{2}}{2} =-\frac{10\sqrt{2}}{2} =-5\sqrt{2} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+10\sqrt{2}}{2*1}=\frac{0+10\sqrt{2}}{2} =\frac{10\sqrt{2}}{2} =5\sqrt{2} $
| x+32=70 | | 50x=10000 | | k+56=90 | | 6y+5=3y+23 | | 13)-6=b/18 | | 5/4c+7=7/8c+19 | | (x+6)+(x+10)=180 | | 10x=4=2(5x+2) | | 2y-6=y+7=25 | | 0.5-6d=5 | | 6.7=7.7-0.5x | | 3x+4=2x(x+4) | | x^2+10x-51=6 | | 1.6=5.1-0.7x | | 8-3x=88 | | 0.5d+6=5 | | 53=3y+14 | | (7x-1)=(8x-14) | | 2x+8+3x+2=5(x-2) | | 6x-4=-44 | | 5+6x-x-x=25.5 | | 4/3=8/n-9 | | 6w-6=3(w+8) | | 5(m-11=-25 | | 8.2+(-1.5)=n | | 2(x-4)+2x=16 | | 3(x+4)-2x=-(x+5) | | −14=42−7a | | 2(4x+9)=-48+34 | | 0.8x=23’ | | 3x/4-1=2x+6 | | 4x+33-13=180 |