If it's not what You are looking for type in the equation solver your own equation and let us solve it.
t2-45=0
We add all the numbers together, and all the variables
t^2-45=0
a = 1; b = 0; c = -45;
Δ = b2-4ac
Δ = 02-4·1·(-45)
Δ = 180
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{180}=\sqrt{36*5}=\sqrt{36}*\sqrt{5}=6\sqrt{5}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{5}}{2*1}=\frac{0-6\sqrt{5}}{2} =-\frac{6\sqrt{5}}{2} =-3\sqrt{5} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{5}}{2*1}=\frac{0+6\sqrt{5}}{2} =\frac{6\sqrt{5}}{2} =3\sqrt{5} $
| 2w+13-20=-15 | | |-4+2b|=16 | | 6(-1-6z)=6 | | c/23-(2c+3)=2(c+5)+c | | 6y+14+11y-26=180 | | 4x+25+70+65=180 | | 2x-(x-2)=-4+2x-8 | | 21x+20x=0 | | 7(-4x-1)=119 | | 2w2-w-28=0 | | -5/25k=10 | | (5×n)-4=41 | | (3y-4)+(4y-17)=180 | | 5x+0.2+9-0.5x+6x-0.6=5x+1.1+7x-0.3+8.5-2x | | 2(×-6)+6=4x-2 | | 4x+1=7x-26 | | -12r+2-15r=25 | | Q=42+0.7t | | -23.1=0.3m-3.6m | | 6-3x=15x | | -2r+1/3-5r/2=25/6 | | 3x+15+30+90=180 | | X=4.3x-4 | | 6x-6+90=180 | | 2(8x-11+7(x+5)=59 | | 3(2p-7)=2(2+4p) | | -8+56x=-28 | | y+-13=-42 | | 4x-3-3x=x-3 | | -2(3x+1)=6x-3 | | -4(7n+9)=3(3-5n)-4n | | -10(-p+2)+13=-7 |