If it's not what You are looking for type in the equation solver your own equation and let us solve it.
t2+5t-36=0
We add all the numbers together, and all the variables
t^2+5t-36=0
a = 1; b = 5; c = -36;
Δ = b2-4ac
Δ = 52-4·1·(-36)
Δ = 169
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{169}=13$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-13}{2*1}=\frac{-18}{2} =-9 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+13}{2*1}=\frac{8}{2} =4 $
| 4p+2=(9p+6)+1 | | 1.2×(x)=3.6 | | t-14=-34 | | X2+21x=0 | | x²-8x-84=0 | | 20=-2(2p-4) | | -5x-1=-9x+7 | | 4x+-3=-2x+9 | | 0.01(x-10)=110 | | 11+6.6x=5+6.9x | | -25=5+p | | 4x+1.4=7 | | F(4)=20x+13 | | Y=12/48=-7/y | | v=0.75(4,200,000,000) | | 2x+10(x-4)=21 | | 4k2-3k+8=6 | | -5(v+4)=7v-6+2(3v+1) | | 6x+-1=8+3x | | -8=2d-22 | | 2x-120)+(x-30)=(1/2+15)=180 | | 3/4x+7=77 | | x+5-2x-5=1 | | 5-2(a+1)=9a | | 70+-1q+-1q+-2q=80 | | x/6=-2.7 | | -4+2x-8=24 | | 48+x=-13 | | -5p+8=-18 | | v20=-1920 | | X+109+x+79=180 | | 20(2n)=480 |