If it's not what You are looking for type in the equation solver your own equation and let us solve it.
t2+4=61
We move all terms to the left:
t2+4-(61)=0
We add all the numbers together, and all the variables
t^2-57=0
a = 1; b = 0; c = -57;
Δ = b2-4ac
Δ = 02-4·1·(-57)
Δ = 228
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{228}=\sqrt{4*57}=\sqrt{4}*\sqrt{57}=2\sqrt{57}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{57}}{2*1}=\frac{0-2\sqrt{57}}{2} =-\frac{2\sqrt{57}}{2} =-\sqrt{57} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{57}}{2*1}=\frac{0+2\sqrt{57}}{2} =\frac{2\sqrt{57}}{2} =\sqrt{57} $
| 37x-74=222 | | 2x^2+7x-69=0 | | –4h+10=–5h | | 3=-12+5w | | -1,5+5b+3,5=0,5-3+2b | | 6r=7=13+7 | | y-12.5=34.2 | | -2k+5=9 | | 2n–4.26=17.04 | | 1.2=s/6 | | Z=-10+15i | | 4x1.17= | | 11h•3=165 | | 6x+21=4x+11 | | a+7=46 | | 3x2–2=46 | | 23=5x–3 | | 42° + x° + 38° = 180° x° = ° | | s+32=48 | | 3,2x-3.2=2.2x+1 | | -5x^2+50=0 | | 〖-5x〗^2+50=0 | | 10n=159 | | -9÷a=-4.5 | | 4x+2=4x+-2 | | -15a=75 | | 6x-20=7x-10 | | 25/48=z/18 | | 0.1x0.7=x | | 105x+14.75=105x+9.50 | | 3x+10=3x+25 | | 4(x-5)=13x-6-2x |