t/16t+24=4t+64

Simple and best practice solution for t/16t+24=4t+64 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for t/16t+24=4t+64 equation:



t/16t+24=4t+64
We move all terms to the left:
t/16t+24-(4t+64)=0
Domain of the equation: 16t!=0
t!=0/16
t!=0
t∈R
We get rid of parentheses
t/16t-4t-64+24=0
We multiply all the terms by the denominator
t-4t*16t-64*16t+24*16t=0
Wy multiply elements
-64t^2+t-1024t+384t=0
We add all the numbers together, and all the variables
-64t^2-639t=0
a = -64; b = -639; c = 0;
Δ = b2-4ac
Δ = -6392-4·(-64)·0
Δ = 408321
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{408321}=639$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-639)-639}{2*-64}=\frac{0}{-128} =0 $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-639)+639}{2*-64}=\frac{1278}{-128} =-9+63/64 $

See similar equations:

| 12-9x=15x | | 9e+(5e+6)=180 | | 3(4w+2)/4=-8 | | -2(2t+5)=6 | | x/2+75=3 | | x+3x-4=161 | | 0.10(y-4)+0.18y=0.08y-0.7 | | x+4+3x-8=68 | | 5x+55=2x+20 | | 3u+5=9-u | | x/8.1=6.9 | | 23a=392 | | 6y+5=18-7 | | 2(2x-7)+8x=2+2(7x-2) | | -5(2u-6)+7u=5(u+8) | | 45+9u=14u | | 20/25=100/x | | H=-t2+t3+10 | | 36=q+2 | | 5)3t-9)=-2(24-6t) | | 37=q+3 | | M=N/r | | 9x+3+9x+5+5x+4+8x=360 | | 5/2(9d-27)-14=6 | | 3(x+2)-9=5x-2(4+x) | | 3(x+2)-9=5x-(4+x) | | 0.1x+36=x | | 2x+1-37=180 | | x-37+3x+1=180 | | 3x+18+102=180 | | 12x-42=7 | | 12x-44=18 |

Equations solver categories