If it's not what You are looking for type in the equation solver your own equation and let us solve it.
t+4/3t=84
We move all terms to the left:
t+4/3t-(84)=0
Domain of the equation: 3t!=0We multiply all the terms by the denominator
t!=0/3
t!=0
t∈R
t*3t-84*3t+4=0
Wy multiply elements
3t^2-252t+4=0
a = 3; b = -252; c = +4;
Δ = b2-4ac
Δ = -2522-4·3·4
Δ = 63456
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{63456}=\sqrt{16*3966}=\sqrt{16}*\sqrt{3966}=4\sqrt{3966}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-252)-4\sqrt{3966}}{2*3}=\frac{252-4\sqrt{3966}}{6} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-252)+4\sqrt{3966}}{2*3}=\frac{252+4\sqrt{3966}}{6} $
| 4,000x+20=11,000 | | 3n+7=2+4n=17+2n= | | x/2+9=2 | | 4x-1.50=30(2) | | 8/7y-2/5=1/0 | | 5y+2=3y+6=10y-2 | | 3n+7=2+4n+17+2n | | 180=14x+110 | | (5x+30)+(2x-4)=180 | | 11x=14x^2 | | 2/3(p-30)=36 | | 4x+1.50=30(2) | | 2x+x+5=3x+7 | | 3=(3x+4) | | 6y+4-3y=5+y+15 | | 2(4x+2)+10=2x-2 | | 2/3x-3/2=7/6-1/3x | | 3x+1=4x+16 | | 14(h-2)=56 | | (1/3x)(-4)=8 | | 2=(4x-26) | | 265-48x=553 | | 9+3(2x+4)=17 | | 3j+7=-8 | | 1/2q+q= | | 7p-3(p+1)=-2p+33 | | 265-48x=554 | | 3(f-17)=96 | | 8+5(3d-6)=-7 | | 10+5x=-2x-67 | | 3.x+4.x-2.x=4,6 | | -5(g-13)=45 |