t+2(t-4)=5(1-t2)

Simple and best practice solution for t+2(t-4)=5(1-t2) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for t+2(t-4)=5(1-t2) equation:



t+2(t-4)=5(1-t2)
We move all terms to the left:
t+2(t-4)-(5(1-t2))=0
We add all the numbers together, and all the variables
-(5(-1t^2+1))+t+2(t-4)=0
We multiply parentheses
-(5(-1t^2+1))+t+2t-8=0
We calculate terms in parentheses: -(5(-1t^2+1)), so:
5(-1t^2+1)
We multiply parentheses
-5t^2+5
Back to the equation:
-(-5t^2+5)
We add all the numbers together, and all the variables
-(-5t^2+5)+3t-8=0
We get rid of parentheses
5t^2+3t-5-8=0
We add all the numbers together, and all the variables
5t^2+3t-13=0
a = 5; b = 3; c = -13;
Δ = b2-4ac
Δ = 32-4·5·(-13)
Δ = 269
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-\sqrt{269}}{2*5}=\frac{-3-\sqrt{269}}{10} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+\sqrt{269}}{2*5}=\frac{-3+\sqrt{269}}{10} $

See similar equations:

| 6b+2b+b=18 | | -2x+18-4x=20-6x | | -2(x-14)=-50 | | 8+8u=12u | | 6/x=8/14 | | |8p+4|=36 | | 51=-4-5k | | 8v-7v=13 | | 3x=30+6 | | 18=t-3 | | –2r−4=2r | | n-4(1+n)=2 | | 23=p+12 | | 19a-16a=18 | | 96=3p | | 13=t-11 | | 23=g+17 | | 2a-1/3=1 | | 79=16x-1 | | 7x-12=3+6 | | 20=c+8 | | 6⁢x+(−3)=4⁢x+12 | | -9(x-3)+x=x-(6x-3 | | 88=1/2(h^2)+5(h) | | -9x=26 | | 4(4+4x)=9 | | 2=k-10 | | x+15×2=100 | | 2x+8-5=-28 | | 9/x=4/6 | | 40+n=2n+28 | | 7(2x-5)=-133 |

Equations solver categories