If it's not what You are looking for type in the equation solver your own equation and let us solve it.
t(t-6)=40
We move all terms to the left:
t(t-6)-(40)=0
We multiply parentheses
t^2-6t-40=0
a = 1; b = -6; c = -40;
Δ = b2-4ac
Δ = -62-4·1·(-40)
Δ = 196
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{196}=14$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-14}{2*1}=\frac{-8}{2} =-4 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+14}{2*1}=\frac{20}{2} =10 $
| 8x–3=15+10x117 | | ⅔(x+4)=4 | | 2n÷2²= | | x2+34x=1700x=1x | | |4x-7|=|3x| | | 4x-3(6+2x)=12 | | -11x+2-7x=20-19x | | -k-(13+4k)=-3(5-9k)+2 | | -5-2x=x+2+1 | | 4x=–16 | | (6x+8)+(5x1)=42 | | 2x-(4x+2)=2x+7 | | 5|10x+7|=85 | | 5(2n-4)=44+4n | | -5-2x=-3+2+1 | | 2·(x−5)=42 | | 3(x+7=12 | | 4y−16+8y=−4 | | (440*(2^x-1))/(2^x+36)=60 | | 3(x+15)-2x=55 | | 110(x+50)=-3x-13+4x | | (5x+4)=(8x+3) | | 2(2)+5y=-11 | | 20=-14+w | | 4x(33)=9 | | 13x-18=74 | | (-7)+b=12 | | |2x+4|=3x-1 | | Y=8+2(-4+3y) | | 2/5=3/y | | 6x-8(5+4x)=116 | | 9=3n+1 |