t(t-3)=(t-2)+2(t-3)

Simple and best practice solution for t(t-3)=(t-2)+2(t-3) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for t(t-3)=(t-2)+2(t-3) equation:



t(t-3)=(t-2)+2(t-3)
We move all terms to the left:
t(t-3)-((t-2)+2(t-3))=0
We multiply parentheses
t^2-3t-((t-2)+2(t-3))=0
We calculate terms in parentheses: -((t-2)+2(t-3)), so:
(t-2)+2(t-3)
We multiply parentheses
(t-2)+2t-6
We get rid of parentheses
t+2t-2-6
We add all the numbers together, and all the variables
3t-8
Back to the equation:
-(3t-8)
We get rid of parentheses
t^2-3t-3t+8=0
We add all the numbers together, and all the variables
t^2-6t+8=0
a = 1; b = -6; c = +8;
Δ = b2-4ac
Δ = -62-4·1·8
Δ = 4
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{4}=2$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-2}{2*1}=\frac{4}{2} =2 $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+2}{2*1}=\frac{8}{2} =4 $

See similar equations:

| 4u−2u−1=11 | | 1x+30=4x-6 | | 20y-11y+1=10 | | 4y-2=y+7 | | 20y−11y−-1=10 | | -43=-7(1-6a)-6(-5-4a) | | -9h-10=89 | | (24.6+3x)/4=-2x+2(x+4.77) | | 3(x-2)+7=6x-3(-1+x) | | 9^t=1 | | 2(4+r)-2(r-7)=27 | | 20y−11y+1=10 | | 7x+48=3x+12 | | 19y−15y=16 | | 32.5x+.2x+.4x=238000 | | 3x+5+8x=49 | | -6−7=-10k+6 | | -4(1-8x)-2(x-2)=-30 | | 4x-6x+29=5x+36 | | x/7+8=4 | | (5+x)+0=5+ | | 3x+24=x-6 | | -6−7k=-10k+6 | | 8(-5x+7)+4x=-232 | | 2q+q+3=9 | | 11−2j=7 | | 2(y+8)=7y-4 | | 41^x=29 | | 33x+.1x=238000 | | 6−7k=-10k+6 | | x+6*2=44 | | 17z=272 |

Equations solver categories