If it's not what You are looking for type in the equation solver your own equation and let us solve it.
t(t+10)=180
We move all terms to the left:
t(t+10)-(180)=0
We multiply parentheses
t^2+10t-180=0
a = 1; b = 10; c = -180;
Δ = b2-4ac
Δ = 102-4·1·(-180)
Δ = 820
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{820}=\sqrt{4*205}=\sqrt{4}*\sqrt{205}=2\sqrt{205}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-2\sqrt{205}}{2*1}=\frac{-10-2\sqrt{205}}{2} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+2\sqrt{205}}{2*1}=\frac{-10+2\sqrt{205}}{2} $
| (8x+9)+(4x+13)=13x+11 | | (-4x-2x)=-28 | | 2u+15=33 | | 2t+10=180 | | (-4x-2x)=+ | | 2x-4=4+3x | | 11x-1=3x+7 | | t+(-22)=-14 | | 2x^2+20x-142=0 | | 95-57=x | | h+21=8 | | t+(t+10)=180 | | 6v-24=-9(v+1) | | 3(2x+3)/13=2x=7 | | s-(-12)=11 | | (57+150)=x | | u-(-19)=21 | | 4–3x=34 | | -4x^2+10=-26 | | a+1.5=2a-1 | | 4.1=-0.5(x-7.1) | | 2(14q+−7)-3q=9 | | j-13=-8 | | 2w+2+2L=16 | | p+(-10)=-12 | | 8w+5=-11 | | g+6=18 | | 4/x=0.7/5.6 | | (x+55)(3x–5°=x | | 5/7x+1/3=2/5-2/7+2/5 | | C(x)=0.1x^2-0.3x+4.323 | | 2(w+2)+2L=16 |