t(1/2)-6t(1/4)+9=0

Simple and best practice solution for t(1/2)-6t(1/4)+9=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for t(1/2)-6t(1/4)+9=0 equation:



t(1/2)-6t(1/4)+9=0
We add all the numbers together, and all the variables
t(+1/2)-6t(+1/4)+9=0
We multiply parentheses
t^2-6t^2+9=0
We add all the numbers together, and all the variables
-5t^2+9=0
a = -5; b = 0; c = +9;
Δ = b2-4ac
Δ = 02-4·(-5)·9
Δ = 180
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{180}=\sqrt{36*5}=\sqrt{36}*\sqrt{5}=6\sqrt{5}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{5}}{2*-5}=\frac{0-6\sqrt{5}}{-10} =-\frac{6\sqrt{5}}{-10} =-\frac{3\sqrt{5}}{-5} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{5}}{2*-5}=\frac{0+6\sqrt{5}}{-10} =\frac{6\sqrt{5}}{-10} =\frac{3\sqrt{5}}{-5} $

See similar equations:

| 5(4n-2)+7(3+7n)=-58 | | 16590=(240-5x)(73+x) | | 10x-3(2x-4=4(x+3) | | f(-4)=3(-4)-1 | | 14x-22=16x-38 | | -2x-8=4x+(-16) | | 2n-9=n+(12+12)÷2 | | 9.5=3.9+x | | 18x+5=22x-10 | | 7y-8y-10=0 | | .01/8.2=1.8/b | | ((1/(x-4)-(1/(x-9))=(1/(x^2-13x+36 | | 3+2=t+6 | | 4x+15+6x-5=x | | x+20+-20=180 | | 11=2+3f | | 8n+9-3n-4=3(n-5) | | -7(1-7r)+3(5+7r)=8 | | 9y–3y–7=–31 | | f3=2(3)+9 | | (3+7x)+(4x-6)+73=180 | | 2x^2-7x-15=62 | | 3x+3(5x+6)=234 | | 9d-2(3d+1)=10d+7 | | (4x-13)3-4x=25 | | –2+2x=–16 | | (3x+9)+73=180 | | 250=20x+50 | | 7x-1+6=3x+3-5x | | 250x+2=1000 | | 3z+9+13z=4z+5 | | 25=4x-3(4x=13) |

Equations solver categories