t^2-20t+96=0

Simple and best practice solution for t^2-20t+96=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for t^2-20t+96=0 equation:



t^2-20t+96=0
a = 1; b = -20; c = +96;
Δ = b2-4ac
Δ = -202-4·1·96
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{16}=4$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-4}{2*1}=\frac{16}{2} =8 $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+4}{2*1}=\frac{24}{2} =12 $

See similar equations:

| -1.50=-5*x/100-5X | | x^2=0.36x+4 | | x^2-0.36x=4 | | 4y+7=3y+15 | | x/x+4=0.36 | | 6-9x^-1/2=0 | | 2x/(3x-9)+(2x-10)/(12-4x)-(x+3)/(6x)=0 | | (2x)/(3x-9)+(2x-10)/(12-4x)+(x+3)/(6x)=0 | | 1/8=3/(4x)+1/(2x) | | 1/8=3/4x+1/2x | | (x^2-6x+9)÷(x-3)=x-3 | | 2x/(3x-9)+(2x-10)/(12-4x)+(x+3)/(6x)=0 | | -8x+5=3(3-x) | | 2x/(3x-9)+(2x-10)/12-4x)+(x+3)/(6x)=0 | | 12x-4+14=0 | | 3x+2=3x+13 | | 12-2(x+3/4)=(3/2x) | | 5p-3p+p=2p | | 2y×y-2y×-5=0 | | x2-33x-200=0 | | 2X–8=–X+1x= | | 2x=15÷4 | | 48m=3264 | | 2364=48m | | -4x^2-2x+36=0 | | -78x=2652 | | x×8/3=40 | | -1407=-67k | | x÷3/8=40 | | 3x+40=50-5x | | 3t+20=4t-30 | | 3x/2-x/3-42=0 |

Equations solver categories