sin(x)+cos(2x)+sin(5x)=0

Simple and best practice solution for sin(x)+cos(2x)+sin(5x)=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for sin(x)+cos(2x)+sin(5x)=0 equation:


Simplifying
sin(x) + cos(2x) + sin(5x) = 0

Multiply ins * x
insx + cos(2x) + sin(5x) = 0

Remove parenthesis around (2x)
insx + cos * 2x + sin(5x) = 0

Reorder the terms for easier multiplication:
insx + 2cos * x + sin(5x) = 0

Multiply cos * x
insx + 2cosx + sin(5x) = 0

Remove parenthesis around (5x)
insx + 2cosx + ins * 5x = 0

Reorder the terms for easier multiplication:
insx + 2cosx + 5ins * x = 0

Multiply ins * x
insx + 2cosx + 5insx = 0

Reorder the terms:
2cosx + insx + 5insx = 0

Combine like terms: insx + 5insx = 6insx
2cosx + 6insx = 0

Solving
2cosx + 6insx = 0

Solving for variable 'c'.

Move all terms containing c to the left, all other terms to the right.

Add '-6insx' to each side of the equation.
2cosx + 6insx + -6insx = 0 + -6insx

Combine like terms: 6insx + -6insx = 0
2cosx + 0 = 0 + -6insx
2cosx = 0 + -6insx
Remove the zero:
2cosx = -6insx

Divide each side by '2osx'.
c = -3ino-1

Simplifying
c = -3ino-1

See similar equations:

| (2/3^4)^1/2 | | -7/4u+5/4=-4u-1/3 | | x^3-24*x^2+84*x+64=0 | | (1/3^4)^1/2 | | 8y+9=11 | | -6/5y-5/3=4/5y+7 | | 322=5(11+9x)-3 | | X-(x-8)=36 | | 0=3x^2-9x+24 | | Y=7/x^5 | | 8+m/4=5 | | x^2+10x+31=x^2+a^2+b | | 14+41= | | 10-12x=-10x-6 | | (2x-3)/6+(2+x)/3=5/2 | | ax^2+3x=0 | | ax^2-3x=0 | | y^2-x*y=-12 | | ax^2+x= | | (4x+1)=(3x+33) | | x^2+m^2x^2+4mx+4=1 | | 9kx^2-4k=0 | | 8/5a+7=-3 | | 1/4*X=7 | | 8w-3(2w-1)= | | y-160=18(x-0) | | x^2-3kx+k=0 | | x+x*15/100=1060-6*x+x*115 | | 9k^2-12k=0 | | 0=336-16x^2 | | 6(4w^2-49)=0 | | 24w^2-294=0 |

Equations solver categories