s2=3

Simple and best practice solution for s2=3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for s2=3 equation:



s2=3
We move all terms to the left:
s2-(3)=0
We add all the numbers together, and all the variables
s^2-3=0
a = 1; b = 0; c = -3;
Δ = b2-4ac
Δ = 02-4·1·(-3)
Δ = 12
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$s_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$s_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{12}=\sqrt{4*3}=\sqrt{4}*\sqrt{3}=2\sqrt{3}$
$s_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{3}}{2*1}=\frac{0-2\sqrt{3}}{2} =-\frac{2\sqrt{3}}{2} =-\sqrt{3} $
$s_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{3}}{2*1}=\frac{0+2\sqrt{3}}{2} =\frac{2\sqrt{3}}{2} =\sqrt{3} $

See similar equations:

| x/10=-0.2 | | u/5+16=25 | | 11j-2j+3j+6j=20 | | 14.23c-15=41.92 | | 9+d= | | X^2+2x+3=9x+3 | | 1/5x+6=115x-6=95x+6=216x+5=17 | | 15p-7p-4p=20 | | t/2+-14=-17 | | 6m+43=6m+43 | | 1/(2-x)=4/(2-x)+(3x+3)/(4-2x) | | 36=45/y | | 14/2=x/24 | | 9y+y-6y=12 | | 10/35=14/d | | –5−u=–2u | | -2y+2/9=12 | | 0.75y=42 | | (2-b)5/8=4.375 | | 2*2/5w=21*3/5 | | m-11=52 | | 6x+5x+2+145=180 | | 3(3x+2)−2x=7x6 | | 5+x4=2 | | 4x-4(-3x-7)=-20 | | (2-b)7/8=2.625 | | x/2-23=-18 | | x+(x*0.02)=2352.76 | | 14m+90=4m+76 | | 6(7+6w)=0 | | (1/3)x-(5/4)=-(4/3) | | -9=−3(2f−5) |

Equations solver categories