If it's not what You are looking for type in the equation solver your own equation and let us solve it.
s2+7=12
We move all terms to the left:
s2+7-(12)=0
We add all the numbers together, and all the variables
s^2-5=0
a = 1; b = 0; c = -5;
Δ = b2-4ac
Δ = 02-4·1·(-5)
Δ = 20
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$s_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$s_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{20}=\sqrt{4*5}=\sqrt{4}*\sqrt{5}=2\sqrt{5}$$s_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{5}}{2*1}=\frac{0-2\sqrt{5}}{2} =-\frac{2\sqrt{5}}{2} =-\sqrt{5} $$s_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{5}}{2*1}=\frac{0+2\sqrt{5}}{2} =\frac{2\sqrt{5}}{2} =\sqrt{5} $
| 34=6+4u | | x+72+2x+40=180 | | -2(j-7)=-6 | | -9(5+x)=72 | | 7.9m-2-2(1.6m+5)=2.8+m | | 1x-5/4=5/6+1x | | 5(x+2)-4=3x+2(4+x) | | 4x−7+2x=−3(x−1)−1 | | h+15.39=-18.02-4h+8.91 | | 1x+14=7x+2 | | 6.7r=5.2r+12.3 | | 1x+41=5 | | 3+7x/2=2/5 | | -4(2n-2)+15n-18=0 | | -19.34-1.1n-10.18=8.4n+18.93 | | -(3b-15)=6(2b+5( | | -4+16r=14r | | w−4+10=27 | | 16h=16+14h | | x/2-4=6.5 | | Y=1n+8 | | 4=u/6.4= | | 1=-q+4 | | 86+2x=94 | | 6k-(-7)=127 | | -3-3=2(1-4x) | | (4x-1)=(5x-8) | | -2x+10=x-35 | | 10x+7=61 | | 6+13h=-14+12h | | 20z-5=5z-16+16z | | 2x-29=29 |