If it's not what You are looking for type in the equation solver your own equation and let us solve it.
s2+20s-43=0
We add all the numbers together, and all the variables
s^2+20s-43=0
a = 1; b = 20; c = -43;
Δ = b2-4ac
Δ = 202-4·1·(-43)
Δ = 572
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$s_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$s_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{572}=\sqrt{4*143}=\sqrt{4}*\sqrt{143}=2\sqrt{143}$$s_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-2\sqrt{143}}{2*1}=\frac{-20-2\sqrt{143}}{2} $$s_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+2\sqrt{143}}{2*1}=\frac{-20+2\sqrt{143}}{2} $
| 73x=5,400 | | 2^2+13x+9=6x | | n^2=-12n+9 | | 3e+9=33 | | -25=1,2(10x-2)+3x | | x/11=4/5 | | 5(x-10)=24 | | -2=1/7h | | 3|2z-10|=-12 | | 3,y-5=5,y-7 | | 2×0x=15 | | X+8y=101 | | 3k+20=29 | | 3x+2-2x-4=-4 | | (5x+6)2=−4x−9 | | 3a+7=-40;a=11 | | 180=60+x+180-3x-70 | | 4.5-6.2=p | | F(x)=15+40 | | x(x+1)^(2)(x-2)(x-1)=0 | | 9y+1=6y+10 | | 2x+6-x=30-4 | | 3y-6=4-2-y | | 2m+3=5m-6 | | x*8=24 | | 4(x+17)=216 | | 3x^2=208 | | 24=2/3x-3 | | 10b-15=25 | | 2,3u+7=3,4u+9 | | 28-(x+4)=9 | | 1/2r+3=8 |