s2+1=4

Simple and best practice solution for s2+1=4 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for s2+1=4 equation:



s2+1=4
We move all terms to the left:
s2+1-(4)=0
We add all the numbers together, and all the variables
s^2-3=0
a = 1; b = 0; c = -3;
Δ = b2-4ac
Δ = 02-4·1·(-3)
Δ = 12
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$s_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$s_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{12}=\sqrt{4*3}=\sqrt{4}*\sqrt{3}=2\sqrt{3}$
$s_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{3}}{2*1}=\frac{0-2\sqrt{3}}{2} =-\frac{2\sqrt{3}}{2} =-\sqrt{3} $
$s_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{3}}{2*1}=\frac{0+2\sqrt{3}}{2} =\frac{2\sqrt{3}}{2} =\sqrt{3} $

See similar equations:

| 3(5)x=375 | | 1=r3 | | -7=3c+6 | | 3x-31=10 | | 17y+3=20 | | u+–1=–4 | | -3.7=-8.5+y | | -65=11x | | u/–1=–2 | | 12(b-3=8(b-2) | | 2(p+1)=12 | | u–1=–2 | | 35+72=x | | 4x-9-2x=4 | | 0=4w^2-9w-90 | | 7v=8,75 | | Y+14x=78 | | 5(-3)=2n-6 | | 16=20-2x | | -3(3u-9)+3u=4(u+8) | | (17x-8)+(9x+24)=180 | | 12/x=192/160 | | f2=2 | | 8x=2x+50 | | -3x-2=4x-9 | | x5=525 | | 2x-4=6x-24 | | 1.3333+x=12 | | 1/4(3m-1)=2/3m-5/6 | | 3(k+8)=24 | | 4x+5-2(-4x-3)=2(x-2) | | 8n-16=16 |

Equations solver categories