s+5/2s+20=62

Simple and best practice solution for s+5/2s+20=62 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for s+5/2s+20=62 equation:



s+5/2s+20=62
We move all terms to the left:
s+5/2s+20-(62)=0
Domain of the equation: 2s!=0
s!=0/2
s!=0
s∈R
We add all the numbers together, and all the variables
s+5/2s-42=0
We multiply all the terms by the denominator
s*2s-42*2s+5=0
Wy multiply elements
2s^2-84s+5=0
a = 2; b = -84; c = +5;
Δ = b2-4ac
Δ = -842-4·2·5
Δ = 7016
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$s_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$s_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{7016}=\sqrt{4*1754}=\sqrt{4}*\sqrt{1754}=2\sqrt{1754}$
$s_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-84)-2\sqrt{1754}}{2*2}=\frac{84-2\sqrt{1754}}{4} $
$s_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-84)+2\sqrt{1754}}{2*2}=\frac{84+2\sqrt{1754}}{4} $

See similar equations:

| 9f-4=-13 | | 4x^2-81x+5=0 | | 1+2=11-x | | 0.2=-4x | | 2x+1=5x-30 | | 4b+6=2-b-4 | | 12+7g=-16 | | -5(3x-19)=2(x-24)-27 | | 435.7=7x-5.3 | | q/6+11=12 | | 3x-1/4-2+1/5=7x-13/20 | | 3(x+7=2(3x+18) | | 12n+10=50n=3 | | 12x+5x+2=48 | | 4d-4=5d+-8 | | z/2+1=-1 | | 1161.7=83x+423 | | 2x^2+4x−2.5=0 | | 4^m=1 | | -529=-23k | | 194.99+2g=284.97 | | -4k+2(54k-6)=-3k-39 | | -528=-23k | | 102x=78x | | 3(x−8)=15 | | 194.99+2g=28497 | | 6(-2g-1)=-(13g+2)6(−2g−1)=−(13g+2) | | 1/4(2x-11)=9/5x+7/10 | | 3=x+1/5 | | x2+100x–1600=0 | | -8-n=-24 | | 25^(10x)=5 |

Equations solver categories