If it's not what You are looking for type in the equation solver your own equation and let us solve it.
s+31/2s=45
We move all terms to the left:
s+31/2s-(45)=0
Domain of the equation: 2s!=0We multiply all the terms by the denominator
s!=0/2
s!=0
s∈R
s*2s-45*2s+31=0
Wy multiply elements
2s^2-90s+31=0
a = 2; b = -90; c = +31;
Δ = b2-4ac
Δ = -902-4·2·31
Δ = 7852
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$s_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$s_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{7852}=\sqrt{4*1963}=\sqrt{4}*\sqrt{1963}=2\sqrt{1963}$$s_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-90)-2\sqrt{1963}}{2*2}=\frac{90-2\sqrt{1963}}{4} $$s_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-90)+2\sqrt{1963}}{2*2}=\frac{90+2\sqrt{1963}}{4} $
| 31/4a-12=3a-15 | | 39=-x/2 | | 5-4+7x+1=9x-1 | | -8(-8+-6)=(x-22) | | 4/5y-11=1/5y-2 | | 5-4+7x+1=8x-1 | | 5-4+7x+1=7x-1 | | v÷4=32 | | 273=175-w | | P+3/5=p-8.4/2 | | 5.7z+1.8=5.3z-2.4 | | -u+134=183 | | 164-y=70 | | 6+-4=10-x | | 164-y=170 | | 1/2•b+9/4=7/4 | | -u/7=-43 | | P+3÷5=p-8.4÷2 | | 8(9k-9)=-5k-32 | | 8x=6/17 | | M10+m13=138 | | p÷5.5=11 | | -4=8+v | | 4x-7-x=7-2x-4 | | k÷7.25=8 | | -27=-25x | | 25b+11=-6b² | | 8/3x+1/3=10+7/3x | | 123.95+45x=753.95 | | -4x+2(-6)=2 | | 3x-(-6)=4 | | 3.5x-0.8=18.24 |