s(1/3*1632)=726

Simple and best practice solution for s(1/3*1632)=726 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for s(1/3*1632)=726 equation:



s(1/3*1632)=726
We move all terms to the left:
s(1/3*1632)-(726)=0
We add all the numbers together, and all the variables
s(+1/3*1632)-726=0
We multiply parentheses
1632s^2-726=0
a = 1632; b = 0; c = -726;
Δ = b2-4ac
Δ = 02-4·1632·(-726)
Δ = 4739328
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$s_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$s_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{4739328}=\sqrt{278784*17}=\sqrt{278784}*\sqrt{17}=528\sqrt{17}$
$s_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-528\sqrt{17}}{2*1632}=\frac{0-528\sqrt{17}}{3264} =-\frac{528\sqrt{17}}{3264} =-\frac{11\sqrt{17}}{68} $
$s_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+528\sqrt{17}}{2*1632}=\frac{0+528\sqrt{17}}{3264} =\frac{528\sqrt{17}}{3264} =\frac{11\sqrt{17}}{68} $

See similar equations:

| –15a+20a=–5 | | s-10=-5 | | 2=-7n+5n | | 8(5x-10)=4x-7 | | 35-7x=-7(4x+4) | | 4x-42-12x=36+5x | | 2x-4+16-x=40 | | 12(x-4)=4(4x-6) | | 5=4y-11 | | 2(3x-6)5=17 | | -9(4+5z)=24 | | |−5x+2|=13 | | –5=4z+19 | | |−8x−9|=55 | | -3u+16=8(u-9) | | 1/5(d-3)=2 | | x=3)18-2x | | 25(.6)^x=1 | | 5x9=3 | | 6–-2n=18 | | n*(n+1)=276*2 | | 2x^2=4x+6 | | 2b=–5+3b | | 12(4x-6)=4(x-4) | | N-2n=-12 | | –3(w–14)=-12 | | 6(x+4)-3x=2x+5 | | -5+3(n-7)=-26+3n | | t^=225 | | 2x–2=2 | | 11m-5=-60 | | 12x=4(x+) |

Equations solver categories