If it's not what You are looking for type in the equation solver your own equation and let us solve it.
r(r-6)=3(7-2r)
We move all terms to the left:
r(r-6)-(3(7-2r))=0
We add all the numbers together, and all the variables
r(r-6)-(3(-2r+7))=0
We multiply parentheses
r^2-6r-(3(-2r+7))=0
We calculate terms in parentheses: -(3(-2r+7)), so:We get rid of parentheses
3(-2r+7)
We multiply parentheses
-6r+21
Back to the equation:
-(-6r+21)
r^2-6r+6r-21=0
We add all the numbers together, and all the variables
r^2-21=0
a = 1; b = 0; c = -21;
Δ = b2-4ac
Δ = 02-4·1·(-21)
Δ = 84
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{84}=\sqrt{4*21}=\sqrt{4}*\sqrt{21}=2\sqrt{21}$$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{21}}{2*1}=\frac{0-2\sqrt{21}}{2} =-\frac{2\sqrt{21}}{2} =-\sqrt{21} $$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{21}}{2*1}=\frac{0+2\sqrt{21}}{2} =\frac{2\sqrt{21}}{2} =\sqrt{21} $
| 16x-15=33+11x | | x^2-2x^2+x^2+6x-2x-x=-4 | | 5y-45=8y-60 | | -43=28b+15b | | x^2-2x^2+x^2=0 | | (x-7)2+x2=(x+1)2 | | 3x2+3=150 | | 4t3-36t=0 | | 3m+136=202 | | 62.5x^2=0 | | 6x-2x^2-2x+2x=-4 | | 5x2+4=12x | | 2n•3=n+65 | | 2y-13=7 | | 14x-14=9x-18+5x | | 5x2+4=12 | | x^2+x(6-2x)=(x-2)(x+2) | | -16x^2+14x+370=0 | | x–7=10 | | 2x+x=144 | | 3(x-5)+2(x-3)=5 | | 10^x=22 | | 2/3(x)+4/3=-2/3 | | 4(4-5a)+6=162 | | X+(20x/100)=80 | | 6(w–5)–3w=12 | | -3(2a+4)=8 | | 5x^2-4(x^2-2x+1)-5=0 | | 2y+9/2=26/3-3y | | X+(2x-4)+44=180 | | 4(3x—11)+23=5x-14 | | (8n+9)+10=4 |