If it's not what You are looking for type in the equation solver your own equation and let us solve it.
q2+6q+5=0
We add all the numbers together, and all the variables
q^2+6q+5=0
a = 1; b = 6; c = +5;
Δ = b2-4ac
Δ = 62-4·1·5
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{16}=4$$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-4}{2*1}=\frac{-10}{2} =-5 $$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+4}{2*1}=\frac{-2}{2} =-1 $
| 4(y-4)-6y=-26 | | 9x2+9=0 | | 4t-10=14 | | y2+27y=0 | | g2+20g=0 | | x2+48x=0 | | 4p-1=2(p+4) | | 3x=45÷5x | | 7x+4x-3x-5=35 | | 16x^+25=0 | | x+(0.20x)=76.81 | | 7(2y÷14)=3(3y÷14) | | -3(v−14)=0 | | 4v+7=-19 | | T(x)=3x+1;11 | | -2=6-2/3x | | G(x)=5x-4;12 | | 9=1/3y-1 | | 27=-4y+7 | | 8^(x+3)=(1/16)^(-x-2) | | 8-2g=-7+g | | -20j+1=11j-10j+19 | | -6t-8=6t-10t+8 | | -9+2v=5v | | 244÷w=86 | | 10-6-2b=5-3b | | f2+ -6=-5 | | 3c=4c+3 | | -7=5+-4m | | 3(x-4)=5(x-2 | | 10-u=10+3u | | 9x=6x-7 |