If it's not what You are looking for type in the equation solver your own equation and let us solve it.
q2+6=9
We move all terms to the left:
q2+6-(9)=0
We add all the numbers together, and all the variables
q^2-3=0
a = 1; b = 0; c = -3;
Δ = b2-4ac
Δ = 02-4·1·(-3)
Δ = 12
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{12}=\sqrt{4*3}=\sqrt{4}*\sqrt{3}=2\sqrt{3}$$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{3}}{2*1}=\frac{0-2\sqrt{3}}{2} =-\frac{2\sqrt{3}}{2} =-\sqrt{3} $$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{3}}{2*1}=\frac{0+2\sqrt{3}}{2} =\frac{2\sqrt{3}}{2} =\sqrt{3} $
| 2.3x+2=18.1 | | 3m-6=6+3m | | 12x-1=83 | | 8x-405+2x+4=43 | | -6-3j=2j | | 3x+4-2x=19 | | 3h+11=8 | | 5r-4=3r+4 | | 5x+34=-2(1-2x) | | 〖8.1〗^(4x+3)=1 | | 3.3x+1.4=24.5 | | 2f−–9=17 | | 3x^2-9x=11x^2-10x | | 7-n=4+3n | | Y-4=12/11(x-3) | | 3^3x-5=1/9^x | | .5x+.45(50)=35.5 | | 5x+24=2x+15 | | m+-3.1=10 | | 7i−4=31 | | 6n+18=4n+8 | | -30=3m | | -6c=-10-6 | | 7d−3=60 | | s2−12=–8 | | s2− 12=–8 | | 7a+1=99 | | -10=-16-r | | 15+8x=-8 | | 9y=84-5y | | -5f=-4 | | 78-4p=16+2p |