q2+3q=45

Simple and best practice solution for q2+3q=45 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for q2+3q=45 equation:



q2+3q=45
We move all terms to the left:
q2+3q-(45)=0
We add all the numbers together, and all the variables
q^2+3q-45=0
a = 1; b = 3; c = -45;
Δ = b2-4ac
Δ = 32-4·1·(-45)
Δ = 189
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{189}=\sqrt{9*21}=\sqrt{9}*\sqrt{21}=3\sqrt{21}$
$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-3\sqrt{21}}{2*1}=\frac{-3-3\sqrt{21}}{2} $
$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+3\sqrt{21}}{2*1}=\frac{-3+3\sqrt{21}}{2} $

See similar equations:

| 20x-36=64x+68 | | 1/2+y=3 | | 78x+29=36x+64 | | x/3+37=70 | | 4*x=-1 | | 79x+19=-85 | | 6x+1=7-3 | | 42x-66=27 | | 2t+4=3t-3 | | 2t+4=3t03 | | 25^(2x+1)=15 | | d=24=12+18 | | 19x+79=34 | | 32=18=42+r | | 78x+89=17 | | 3x-2(3x-4)+13+7x=9+8x | | 78⋅x+89=17 | | 97x+20=63 | | 97x20=63 | | 84x+16=0 | | 7•(x-5)=35 | | 99x+18=0 | | -64x-71=0 | | x+15+15=29+15 | | -35x-26=0 | | A=52a+6 | | 87x-32=0 | | x+5+5=21+5 | | (-2,y);4×+3y=4 | | (×,6);3×+y=12 | | X²+36x+324=0 | | 6d+8=38 |

Equations solver categories