q1+q2=0

Simple and best practice solution for q1+q2=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for q1+q2=0 equation:



q1+q2=0
We add all the numbers together, and all the variables
q^2+q=0
a = 1; b = 1; c = 0;
Δ = b2-4ac
Δ = 12-4·1·0
Δ = 1
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{1}=1$
$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-1}{2*1}=\frac{-2}{2} =-1 $
$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+1}{2*1}=\frac{0}{2} =0 $

See similar equations:

| 3x=-2x+100 | | 3x=(-2x+100 | | 4/x+20=1/5 | | 8x-3(x+2)=3x+8 | | 4m–6-3m=5m+10 | | 7) 3(2x+6)=2(4x-5) | | 3x+20=40x-10 | | (2x-4)=65 | | )7x–36=4–x | | (5x+2)/(x-3)=-9/8 | | 5x=10+4× | | s^2+12s+8=0 | | 3x–48=24 | | 4x2+3x+30=0 | | 4x2-3x+3=0 | | Y=-24/7x | | 3.x+15=48 | | 7y+48=y+24 | | 4x+15+x=+45 | | x2+16x/2=36 | | 3x-12=-60/* | | 4x2+3x+3=0 | | n*n*n=256 | | (8+5)(n-4)=0 | | B(n)=31.53*1.018^2 | | 5x-(2x-9)=½x+7 | | B(n)=31.53*1.018^-9 | | 5x-(2x-9)+7=17 | | x-(x*0.01)=250000 | | 3(2x+1)=6x+3é/ | | √9x^225=12 | | (D^3-6D^2+11D-6)y=0) |

Equations solver categories