p2=726

Simple and best practice solution for p2=726 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for p2=726 equation:



p2=726
We move all terms to the left:
p2-(726)=0
We add all the numbers together, and all the variables
p^2-726=0
a = 1; b = 0; c = -726;
Δ = b2-4ac
Δ = 02-4·1·(-726)
Δ = 2904
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2904}=\sqrt{484*6}=\sqrt{484}*\sqrt{6}=22\sqrt{6}$
$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-22\sqrt{6}}{2*1}=\frac{0-22\sqrt{6}}{2} =-\frac{22\sqrt{6}}{2} =-11\sqrt{6} $
$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+22\sqrt{6}}{2*1}=\frac{0+22\sqrt{6}}{2} =\frac{22\sqrt{6}}{2} =11\sqrt{6} $

See similar equations:

| 8−2m=−2 | | -16+7n=10n+20 | | 8+3x=7+3 | | -3-3m=-4(2m+7) | | -11g+20=-9g | | 3.02=x-1.1 | | 3x–10=4x+12 | | 7(x+6)=43 | | 4+c=+10 | | 4x-2+2x=4x | | –10+2p=p | | │15-3x│=12 | | -2x+16=45 | | 6(3n+1)=102 | | 2(x-4)=-4(x+80 | | c^2=0.0169 | | 4(3-x)=40 | | 14.88+2.1q=1.3q | | 7(1-2n)-3=4-2n | | 4-2h/8=-1 | | |48|=y | | 3x+2+(x+5)=23 | | 9+2v=-16+7v | | 2-2r=-5r+6+4r | | 3(1-r)+5r=5-4(r-1) | | -11x10=-76 | | x^2=36/100 | | 8+3(x-5)=11 | | 2(1/2t+3=1 | | 1-n-4=-7 | | 29=3-2x | | -11p-20=14-18p+15 |

Equations solver categories