p2=125

Simple and best practice solution for p2=125 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for p2=125 equation:



p2=125
We move all terms to the left:
p2-(125)=0
We add all the numbers together, and all the variables
p^2-125=0
a = 1; b = 0; c = -125;
Δ = b2-4ac
Δ = 02-4·1·(-125)
Δ = 500
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{500}=\sqrt{100*5}=\sqrt{100}*\sqrt{5}=10\sqrt{5}$
$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-10\sqrt{5}}{2*1}=\frac{0-10\sqrt{5}}{2} =-\frac{10\sqrt{5}}{2} =-5\sqrt{5} $
$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+10\sqrt{5}}{2*1}=\frac{0+10\sqrt{5}}{2} =\frac{10\sqrt{5}}{2} =5\sqrt{5} $

See similar equations:

| -12+x/2=-2 | | 21a=33 | | -4(-2x+8)=-40 | | 32.6=p+11.3 | | 1z-4=-16 | | 3z^2+1z-7=0 | | 15=50b | | 4x^2-3-11x=0 | | 4x+2x+4x+2x=360 | | 2x+9=12x-x | | -2(v+1)=6v-4+2(3v+3) | | 8x-6x+17x+6=-13 | | 1x+3=4x-9 | | 5+x=7=16 | | 2.50n+7.50=12.50 | | 4x+2x+4x+2x=360¤ | | 11x+-5=2x+2 | | -4(7x-3)+1=-28x+13 | | x/4-15=65 | | x+4=8(2x+3)-5 | | 2x^-27x+36=0 | | 5.2+11.1+6.4+x=34.6 | | 11x-33+9x-1+146=180 | | x+4=8(2x+3)−5x+4=8(2x+3)-5 | | 12-2v=v | | 11x-33+9x-1=180 | | 9x^2-1-8x=0 | | 4m+6m+3m+16=-20 | | 19=-3(2x+1)+7x | | 12v=6v+12 | | 1/(2x-4)x=-4 | | 20j-19j+2=19 |

Equations solver categories