If it's not what You are looking for type in the equation solver your own equation and let us solve it.
p2+32p=0
We add all the numbers together, and all the variables
p^2+32p=0
a = 1; b = 32; c = 0;
Δ = b2-4ac
Δ = 322-4·1·0
Δ = 1024
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1024}=32$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(32)-32}{2*1}=\frac{-64}{2} =-32 $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(32)+32}{2*1}=\frac{0}{2} =0 $
| t/9–12=–14 | | 9/48=x/16 | | 35(5)^25x+28=35 | | 12.4u+9.12=18.1u | | -43.1x(-97.)= | | 5x^2-8=172 | | w+3.45=7.25 | | 5x^{2}-8=172 | | 17-(4n-6)=-9 | | -40=-5(y+9) | | 0=2x+12=48 | | 18-1/15x=15 | | 3(2y/5)=33 | | 9x15=6x+15 | | 6000=-0.2x+20 | | 6(x-2)=-3x | | y=-0.2*6000+20 | | -6x-2=5x-5 | | 20w=20-2(w-2) | | 6r-7=-31 | | 3y-6=(y-1)+-10y+5 | | -22=-3x+4x | | 5t+12=8t | | 15/n=n/35 | | 5x=(+)+x | | 5t+11=8t | | 3x2+4=7 | | (5x)/(3)+(15)/(2)=(5)/(2) | | y=(-0.2)*15500+20 | | 12=2(2x-8) | | −4(4−x)=45(x+12) | | 3s+13=19 |