If it's not what You are looking for type in the equation solver your own equation and let us solve it.
p-5(p+4)p=(8-p)
We move all terms to the left:
p-5(p+4)p-((8-p))=0
We add all the numbers together, and all the variables
p-5(p+4)p-((-1p+8))=0
We multiply parentheses
-5p^2+p-20p-((-1p+8))=0
We calculate terms in parentheses: -((-1p+8)), so:We add all the numbers together, and all the variables
(-1p+8)
We get rid of parentheses
-1p+8
Back to the equation:
-(-1p+8)
-5p^2-19p-(-1p+8)=0
We get rid of parentheses
-5p^2-19p+1p-8=0
We add all the numbers together, and all the variables
-5p^2-18p-8=0
a = -5; b = -18; c = -8;
Δ = b2-4ac
Δ = -182-4·(-5)·(-8)
Δ = 164
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{164}=\sqrt{4*41}=\sqrt{4}*\sqrt{41}=2\sqrt{41}$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-2\sqrt{41}}{2*-5}=\frac{18-2\sqrt{41}}{-10} $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+2\sqrt{41}}{2*-5}=\frac{18+2\sqrt{41}}{-10} $
| 14=s/2+12 | | -7+7y=3y+3-6 | | x-4=3(6x-54) | | 9k+9=-9k+9+2k | | 4a^2+6a-6=-3 | | 4×+8=3x+5 | | -32=4+2x | | 328.32=x-2.7 | | 10-4p=-10p-8 | | 4n-2n-n=17 | | 11x-1=6x+16+38 | | -4-r+1=9+r | | -3(8+m)=-51 | | 2-4x2=-110 | | 3x+2(x+2)=10–(2x–5) | | (y/5)+8=-2 | | x/3+19=49 | | 8n=73+7 | | 8.6=5p-45+.4 | | 5.3(2.3g+1)= | | (4x-3)=53 | | 2u+2u=64 | | -4+7b=6b-1 | | 19m+m-8m-7m+4m=9 | | 3/15+n=9 | | -5r=125r=-15 | | m+(-7)=8 | | 3-3q=7-8q+9q | | 24x=12=-3x | | -8(4f+9)=-40 | | v+18/6=8 | | 22.50=18.22+c |