If it's not what You are looking for type in the equation solver your own equation and let us solve it.
p(9p-5)=84
We move all terms to the left:
p(9p-5)-(84)=0
We multiply parentheses
9p^2-5p-84=0
a = 9; b = -5; c = -84;
Δ = b2-4ac
Δ = -52-4·9·(-84)
Δ = 3049
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-5)-\sqrt{3049}}{2*9}=\frac{5-\sqrt{3049}}{18} $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-5)+\sqrt{3049}}{2*9}=\frac{5+\sqrt{3049}}{18} $
| 8(3x+4)=250 | | 2/3+195=x | | (6+f)(6+f)=144 | | 2/3=195=x | | 4(y+6)=12y | | 3n-2=5n+ | | 195=121-v | | 139=268-x | | 139-268=x | | 12-3x=4+(-2x)= | | 1/5x+2/3=195 | | 7=4x15 | | -v+260=100 | | 205=105-x | | 1/2x+7=21 | | 22x+21=-33x | | 1/2+7x=21 | | 3t^2-20t+72=0 | | 2(d-1)+2d=3 | | 4.8-1.8x=x^2 | | 6(1-4w=-18 | | 5r+3=1 | | x7=−1 | | m-5=4m-17 | | 3x-30=3+3x | | 16-6n=n+72 | | 4^3x=15 | | u+4/5=1/6 | | -4n+2(5n-6)=-3n+33 | | d^2-3d+6=0 | | f-4=6f+ | | L=(2/3)f+0.05 |