If it's not what You are looking for type in the equation solver your own equation and let us solve it.
p(8p-9)=0
We multiply parentheses
8p^2-9p=0
a = 8; b = -9; c = 0;
Δ = b2-4ac
Δ = -92-4·8·0
Δ = 81
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{81}=9$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-9)-9}{2*8}=\frac{0}{16} =0 $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-9)+9}{2*8}=\frac{18}{16} =1+1/8 $
| 7x-15=-22 | | -1(6k-5)-(-5k+8)=-3 | | 2(4x+4)=2x-8 | | 2x+19=44-3x | | 2(x+1)+7=3+5x | | 0.5(8x-9)=7.5 | | x+2/8=-6 | | 5h-64=32 | | 1/2(8x-9)=7.5 | | 6=v/2 | | 3x-9+x-2+2x-5=180 | | 2t+34=32 | | Y=3x;(2,10) | | x-7=8x+3-5x | | 9t+34=32 | | 7x2=100 | | 6x=24+12 | | v=30-5v | | 6q-19=29 | | (2x-5)(x+1)=-12x | | -4.8-5(2x-0.9)=2.5(x+9.6) | | z/10+3=8 | | (0.94*x)+x=1 | | ×2+y2+4×-6y+9=0 | | 135+(6x+3)=180 | | 1/2-2/3x=-2+x | | h−35=40 | | 4x+8=9x-42 | | 0=1.3x^2-176x+1.786 | | -23+7x=8-2(x+2) | | 50=T+c | | -11n+11=-10n-4 |