If it's not what You are looking for type in the equation solver your own equation and let us solve it.
p(7p+8)=0
We multiply parentheses
7p^2+8p=0
a = 7; b = 8; c = 0;
Δ = b2-4ac
Δ = 82-4·7·0
Δ = 64
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{64}=8$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-8}{2*7}=\frac{-16}{14} =-1+1/7 $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+8}{2*7}=\frac{0}{14} =0 $
| 6(3x-3)=19 | | 5−x=−8 | | 3h+7=-h-10 | | 9x+2x+3=5x+26 | | -5(7x-7)=35x-35 | | h(3)=27-3^ | | 3=x-7/2 | | 22=-3(8z+4) | | 2x^2+10=8 | | -4=z/2=16 | | 3h+7=-h10 | | 9+3p+2p-1=67 | | 2(3x-7)+4=76 | | 5r+10=2r-5 | | 4(x+35)-3(-x+35)=-21 | | h(1)=9-1^ | | y/4+3/4=y/7-3/4 | | 18p^2+72=0 | | 3x-20=7x+6 | | -4d+7=3d | | h(0)=0-0 | | 5(5x=8)=7x=9 | | c−3+5=7 | | 4{5(12+3)-2}-7=a | | 9(6=m))=-27 | | h(3)=30-6^ | | $10+y(1.50)=$12.50+y(1.00) | | 15=6+6x | | 5(y+2)-8y=-14 | | 45-2x=5x | | 20+a=-50 | | x+2x+2x+1=21 |